博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
linux内核中的链表
阅读量:2030 次
发布时间:2019-04-28

本文共 38053 字,大约阅读时间需要 126 分钟。

/* SPDX-License-Identifier: GPL-2.0 */#ifndef _LINUX_LIST_H#define _LINUX_LIST_H#include 
#include
#ifndef static_unused#define static_unused static __attribute__((unused))#endif#ifndef offsetof#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)#endif /** * container_of - cast a member of a structure out to the containing structure * @ptr: the pointer to the member. * @type: the type of the container struct this is embedded in. * @member: the name of the member within the struct. * */#ifndef container_of#define container_of(ptr, type, member) ({ \ const typeof(((type *)0)->member)*__mptr = (ptr); \ (type *)((char *)__mptr - offsetof(type, member)); })#endif/** * offsetofend(TYPE, MEMBER) * * @TYPE: The type of the structure * @MEMBER: The member within the structure to get the end offset of */#define offsetofend(TYPE, MEMBER) \ (offsetof(TYPE, MEMBER) + sizeof(((TYPE *)0)->MEMBER))#ifndef WRITE_ONCE#define WRITE_ONCE(var, val) (*((volatile typeof(val) *)(&(var))) = (val))#endif#ifndef READ_ONCE#define READ_ONCE(var) (*((volatile typeof(var) *)(&(var))))#endif#ifndef LIST_POISON1#define LIST_POISON1 ((void *) 0x00100100)#endif#ifndef LIST_POISON2#define LIST_POISON2 ((void *) 0x00200200)#endif/* * Simple doubly linked list implementation. * * Some of the internal functions ("__xxx") are useful when * manipulating whole lists rather than single entries, as * sometimes we already know the next/prev entries and we can * generate better code by using them directly rather than * using the generic single-entry routines. */#define LIST_HEAD_INIT(name) { &(name), &(name) }#define LIST_HEAD(name) \ struct list_head name = LIST_HEAD_INIT(name)struct list_head { struct list_head *next, *prev;};static_unused inline void INIT_LIST_HEAD(struct list_head *list){ list->next = list; list->prev = list;}static_unused inline bool __list_add_valid(struct list_head *new, struct list_head *prev, struct list_head *next){ return true;}static_unused inline bool __list_del_entry_valid(struct list_head *entry){ return true;}/* * Insert a new entry between two known consecutive entries. * * This is only for internal list manipulation where we know * the prev/next entries already! */static_unused inline void __list_add(struct list_head *new, struct list_head *prev, struct list_head *next){ if (!__list_add_valid(new, prev, next)) return; next->prev = new; new->next = next; new->prev = prev; WRITE_ONCE(prev->next, new);}/** * list_add - add a new entry * @new: new entry to be added * @head: list head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */static_unused inline void list_add(struct list_head *new, struct list_head *head){ __list_add(new, head, head->next);}/** * list_add_tail - add a new entry * @new: new entry to be added * @head: list head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. */static_unused inline void list_add_tail(struct list_head *new, struct list_head *head){ __list_add(new, head->prev, head);}/* * Delete a list entry by making the prev/next entries * point to each other. * * This is only for internal list manipulation where we know * the prev/next entries already! */static_unused inline void __list_del(struct list_head * prev, struct list_head * next){ next->prev = prev; WRITE_ONCE(prev->next, next);}/* * Delete a list entry and clear the 'prev' pointer. * * This is a special-purpose list clearing method used in the networking code * for lists allocated as per-cpu, where we don't want to incur the extra * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this * needs to check the node 'prev' pointer instead of calling list_empty(). */static_unused inline void __list_del_clearprev(struct list_head *entry){ __list_del(entry->prev, entry->next); entry->prev = NULL;}/** * list_del - deletes entry from list. * @entry: the element to delete from the list. * Note: list_empty() on entry does not return true after this, the entry is * in an undefined state. */static_unused inline void __list_del_entry(struct list_head *entry){ if (!__list_del_entry_valid(entry)) return; __list_del(entry->prev, entry->next);}static_unused inline void list_del(struct list_head *entry){ __list_del_entry(entry); entry->next = LIST_POISON1; entry->prev = LIST_POISON2;}/** * list_replace - replace old entry by new one * @old : the element to be replaced * @new : the new element to insert * * If @old was empty, it will be overwritten. */static_unused inline void list_replace(struct list_head *old, struct list_head *new){ new->next = old->next; new->next->prev = new; new->prev = old->prev; new->prev->next = new;}static_unused inline void list_replace_init(struct list_head *old, struct list_head *new){ list_replace(old, new); INIT_LIST_HEAD(old);}/** * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position * @entry1: the location to place entry2 * @entry2: the location to place entry1 */static_unused inline void list_swap(struct list_head *entry1, struct list_head *entry2){ struct list_head *pos = entry2->prev; list_del(entry2); list_replace(entry1, entry2); if (pos == entry1) pos = entry2; list_add(entry1, pos);}/** * list_del_init - deletes entry from list and reinitialize it. * @entry: the element to delete from the list. */static_unused inline void list_del_init(struct list_head *entry){ __list_del_entry(entry); INIT_LIST_HEAD(entry);}/** * list_move - delete from one list and add as another's head * @list: the entry to move * @head: the head that will precede our entry */static_unused inline void list_move(struct list_head *list, struct list_head *head){ __list_del_entry(list); list_add(list, head);}/** * list_move_tail - delete from one list and add as another's tail * @list: the entry to move * @head: the head that will follow our entry */static_unused inline void list_move_tail(struct list_head *list, struct list_head *head){ __list_del_entry(list); list_add_tail(list, head);}/** * list_bulk_move_tail - move a subsection of a list to its tail * @head: the head that will follow our entry * @first: first entry to move * @last: last entry to move, can be the same as first * * Move all entries between @first and including @last before @head. * All three entries must belong to the same linked list. */static_unused inline void list_bulk_move_tail(struct list_head *head, struct list_head *first, struct list_head *last){ first->prev->next = last->next; last->next->prev = first->prev; head->prev->next = first; first->prev = head->prev; last->next = head; head->prev = last;}/** * list_is_first -- tests whether @list is the first entry in list @head * @list: the entry to test * @head: the head of the list */static_unused inline int list_is_first(const struct list_head *list, const struct list_head *head){ return list->prev == head;}/** * list_is_last - tests whether @list is the last entry in list @head * @list: the entry to test * @head: the head of the list */static_unused inline int list_is_last(const struct list_head *list, const struct list_head *head){ return list->next == head;}/** * list_empty - tests whether a list is empty * @head: the list to test. */static_unused inline int list_empty(const struct list_head *head){ return READ_ONCE(head->next) == head;}/** * list_empty_careful - tests whether a list is empty and not being modified * @head: the list to test * * Description: * tests whether a list is empty _and_ checks that no other CPU might be * in the process of modifying either member (next or prev) * * NOTE: using list_empty_careful() without synchronization * can only be safe if the only activity that can happen * to the list entry is list_del_init(). Eg. it cannot be used * if another CPU could re-list_add() it. */static_unused inline int list_empty_careful(const struct list_head *head){ struct list_head *next = head->next; return (next == head) && (next == head->prev);}/** * list_rotate_left - rotate the list to the left * @head: the head of the list */static_unused inline void list_rotate_left(struct list_head *head){ struct list_head *first; if (!list_empty(head)) { first = head->next; list_move_tail(first, head); }}/** * list_rotate_to_front() - Rotate list to specific item. * @list: The desired new front of the list. * @head: The head of the list. * * Rotates list so that @list becomes the new front of the list. */static_unused inline void list_rotate_to_front(struct list_head *list, struct list_head *head){ /* * Deletes the list head from the list denoted by @head and * places it as the tail of @list, this effectively rotates the * list so that @list is at the front. */ list_move_tail(head, list);}/** * list_is_singular - tests whether a list has just one entry. * @head: the list to test. */static_unused inline int list_is_singular(const struct list_head *head){ return !list_empty(head) && (head->next == head->prev);}static_unused inline void __list_cut_position(struct list_head *list, struct list_head *head, struct list_head *entry){ struct list_head *new_first = entry->next; list->next = head->next; list->next->prev = list; list->prev = entry; entry->next = list; head->next = new_first; new_first->prev = head;}/** * list_cut_position - cut a list into two * @list: a new list to add all removed entries * @head: a list with entries * @entry: an entry within head, could be the head itself * and if so we won't cut the list * * This helper moves the initial part of @head, up to and * including @entry, from @head to @list. You should * pass on @entry an element you know is on @head. @list * should be an empty list or a list you do not care about * losing its data. * */static_unused inline void list_cut_position(struct list_head *list, struct list_head *head, struct list_head *entry){ if (list_empty(head)) return; if (list_is_singular(head) && (head->next != entry && head != entry)) return; if (entry == head) INIT_LIST_HEAD(list); else __list_cut_position(list, head, entry);}/** * list_cut_before - cut a list into two, before given entry * @list: a new list to add all removed entries * @head: a list with entries * @entry: an entry within head, could be the head itself * * This helper moves the initial part of @head, up to but * excluding @entry, from @head to @list. You should pass * in @entry an element you know is on @head. @list should * be an empty list or a list you do not care about losing * its data. * If @entry == @head, all entries on @head are moved to * @list. */static_unused inline void list_cut_before(struct list_head *list, struct list_head *head, struct list_head *entry){ if (head->next == entry) { INIT_LIST_HEAD(list); return; } list->next = head->next; list->next->prev = list; list->prev = entry->prev; list->prev->next = list; head->next = entry; entry->prev = head;}static_unused inline void __list_splice(const struct list_head *list, struct list_head *prev, struct list_head *next){ struct list_head *first = list->next; struct list_head *last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last;}/** * list_splice - join two lists, this is designed for stacks * @list: the new list to add. * @head: the place to add it in the first list. */static_unused inline void list_splice(const struct list_head *list, struct list_head *head){ if (!list_empty(list)) __list_splice(list, head, head->next);}/** * list_splice_tail - join two lists, each list being a queue * @list: the new list to add. * @head: the place to add it in the first list. */static_unused inline void list_splice_tail(struct list_head *list, struct list_head *head){ if (!list_empty(list)) __list_splice(list, head->prev, head);}/** * list_splice_init - join two lists and reinitialise the emptied list. * @list: the new list to add. * @head: the place to add it in the first list. * * The list at @list is reinitialised */static_unused inline void list_splice_init(struct list_head *list, struct list_head *head){ if (!list_empty(list)) { __list_splice(list, head, head->next); INIT_LIST_HEAD(list); }}/** * list_splice_tail_init - join two lists and reinitialise the emptied list * @list: the new list to add. * @head: the place to add it in the first list. * * Each of the lists is a queue. * The list at @list is reinitialised */static_unused inline void list_splice_tail_init(struct list_head *list, struct list_head *head){ if (!list_empty(list)) { __list_splice(list, head->prev, head); INIT_LIST_HEAD(list); }}/** * list_entry - get the struct for this entry * @ptr: the &struct list_head pointer. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. */#define list_entry(ptr, type, member) container_of(ptr, type, member)/** * list_first_entry - get the first element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note, that list is expected to be not empty. */#define list_first_entry(ptr, type, member) list_entry((ptr)->next, type, member)/** * list_last_entry - get the last element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note, that list is expected to be not empty. */#define list_last_entry(ptr, type, member) list_entry((ptr)->prev, type, member)/** * list_first_entry_or_null - get the first element from a list * @ptr: the list head to take the element from. * @type: the type of the struct this is embedded in. * @member: the name of the list_head within the struct. * * Note that if the list is empty, it returns NULL. */#define list_first_entry_or_null(ptr, type, member) ({ \ struct list_head *head__ = (ptr); \ struct list_head *pos__ = READ_ONCE(head__->next); \ pos__ != head__ ? list_entry(pos__, type, member) : NULL; \})/** * list_next_entry - get the next element in list * @pos: the type * to cursor * @member: the name of the list_head within the struct. */#define list_next_entry(pos, member) list_entry((pos)->member.next, typeof(*(pos)), member)/** * list_prev_entry - get the prev element in list * @pos: the type * to cursor * @member: the name of the list_head within the struct. */#define list_prev_entry(pos, member) list_entry((pos)->member.prev, typeof(*(pos)), member)/** * list_for_each - iterate over a list * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. */#define list_for_each(pos, head) for (pos = (head)->next; pos != (head); pos = pos->next)/** * list_for_each_prev - iterate over a list backwards * @pos: the &struct list_head to use as a loop cursor. * @head: the head for your list. */#define list_for_each_prev(pos, head) for (pos = (head)->prev; pos != (head); pos = pos->prev)/** * list_for_each_safe - iterate over a list safe against removal of list entry * @pos: the &struct list_head to use as a loop cursor. * @n: another &struct list_head to use as temporary storage * @head: the head for your list. */#define list_for_each_safe(pos, n, head) \ for (pos = (head)->next, n = pos->next; pos != (head); \ pos = n, n = pos->next)/** * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry * @pos: the &struct list_head to use as a loop cursor. * @n: another &struct list_head to use as temporary storage * @head: the head for your list. */#define list_for_each_prev_safe(pos, n, head) \ for (pos = (head)->prev, n = pos->prev; \ pos != (head); \ pos = n, n = pos->prev)/** * list_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. */#define list_for_each_entry(pos, head, member) \ for (pos = list_first_entry(head, typeof(*pos), member); \ &pos->member != (head); \ pos = list_next_entry(pos, member))/** * list_for_each_entry_reverse - iterate backwards over list of given type. * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. */#define list_for_each_entry_reverse(pos, head, member) \ for (pos = list_last_entry(head, typeof(*pos), member); \ &pos->member != (head); \ pos = list_prev_entry(pos, member))/** * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() * @pos: the type * to use as a start point * @head: the head of the list * @member: the name of the list_head within the struct. * * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). */#define list_prepare_entry(pos, head, member) \ ((pos) ? : list_entry(head, typeof(*pos), member))/** * list_for_each_entry_continue - continue iteration over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Continue to iterate over list of given type, continuing after * the current position. */#define list_for_each_entry_continue(pos, head, member) \ for (pos = list_next_entry(pos, member); \ &pos->member != (head); \ pos = list_next_entry(pos, member))/** * list_for_each_entry_continue_reverse - iterate backwards from the given point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Start to iterate over list of given type backwards, continuing after * the current position. */#define list_for_each_entry_continue_reverse(pos, head, member) \ for (pos = list_prev_entry(pos, member); \ &pos->member != (head); \ pos = list_prev_entry(pos, member))/** * list_for_each_entry_from - iterate over list of given type from the current point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate over list of given type, continuing from current position. */#define list_for_each_entry_from(pos, head, member) \ for (; &pos->member != (head); \ pos = list_next_entry(pos, member))/** * list_for_each_entry_from_reverse - iterate backwards over list of given type * from the current point * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate backwards over list of given type, continuing from current position. */#define list_for_each_entry_from_reverse(pos, head, member) \ for (; &pos->member != (head); \ pos = list_prev_entry(pos, member))/** * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. */#define list_for_each_entry_safe(pos, n, head, member) \ for (pos = list_first_entry(head, typeof(*pos), member), \ n = list_next_entry(pos, member); \ &pos->member != (head); \ pos = n, n = list_next_entry(n, member))/** * list_for_each_entry_safe_continue - continue list iteration safe against removal * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate over list of given type, continuing after current point, * safe against removal of list entry. */#define list_for_each_entry_safe_continue(pos, n, head, member) \ for (pos = list_next_entry(pos, member), \ n = list_next_entry(pos, member); \ &pos->member != (head); \ pos = n, n = list_next_entry(n, member))/** * list_for_each_entry_safe_from - iterate over list from current point safe against removal * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate over list of given type from current point, safe against * removal of list entry. */#define list_for_each_entry_safe_from(pos, n, head, member) \ for (n = list_next_entry(pos, member); \ &pos->member != (head); \ pos = n, n = list_next_entry(n, member))/** * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal * @pos: the type * to use as a loop cursor. * @n: another type * to use as temporary storage * @head: the head for your list. * @member: the name of the list_head within the struct. * * Iterate backwards over list of given type, safe against removal * of list entry. */#define list_for_each_entry_safe_reverse(pos, n, head, member) \ for (pos = list_last_entry(head, typeof(*pos), member), \ n = list_prev_entry(pos, member); \ &pos->member != (head); \ pos = n, n = list_prev_entry(n, member))/** * list_safe_reset_next - reset a stale陈旧 list_for_each_entry_safe loop * @pos: the loop cursor used in the list_for_each_entry_safe loop * @n: temporary storage used in list_for_each_entry_safe * @member: the name of the list_head within the struct. * * list_safe_reset_next is not safe to use in general if the list may be * modified concurrently (eg. the lock is dropped in the loop body). An * exception to this is if the cursor element (pos) is pinned in the list, * and list_safe_reset_next is called after re-taking the lock and before * completing the current iteration of the loop body. */#define list_safe_reset_next(pos, n, member) \ n = list_next_entry(pos, member)/* Double linked lists 散列表 *****************************************************************************************//* * Double linked lists with a single pointer list head. * Mostly useful for hash tables where the two pointer list head is * too wasteful. * You lose the ability to access the tail in O(1). */#define HLIST_HEAD_INIT { .first = NULL }#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)struct hlist_head {//散列表 struct hlist_node *first;};struct hlist_node {//散列表 struct hlist_node *next, **pprev;};static_unused inline void INIT_HLIST_NODE(struct hlist_node *h){ h->next = NULL; h->pprev = NULL;}static_unused inline int hlist_unhashed(const struct hlist_node *h){ return !h->pprev;}static_unused inline int hlist_empty(const struct hlist_head *h){ return !READ_ONCE(h->first);}static_unused inline void __hlist_del(struct hlist_node *n){ struct hlist_node *next = n->next; struct hlist_node **pprev = n->pprev; WRITE_ONCE(*pprev, next); if (next) next->pprev = pprev;}static_unused inline void hlist_del(struct hlist_node *n){ __hlist_del(n); n->next = LIST_POISON1; n->pprev = LIST_POISON2;}static_unused inline void hlist_del_init(struct hlist_node *n){ if (!hlist_unhashed(n)) { __hlist_del(n); INIT_HLIST_NODE(n); }}static_unused inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h){ struct hlist_node *first = h->first; n->next = first; if (first) first->pprev = &n->next; WRITE_ONCE(h->first, n); n->pprev = &h->first;}/* next must be != NULL */static_unused inline void hlist_add_before(struct hlist_node *n, struct hlist_node *next){ n->pprev = next->pprev; n->next = next; next->pprev = &n->next; WRITE_ONCE(*(n->pprev), n);}static_unused inline void hlist_add_behind(struct hlist_node *n, struct hlist_node *prev){ n->next = prev->next; prev->next = n; n->pprev = &prev->next; if (n->next) n->next->pprev = &n->next;}/* after that we'll appear to be on some hlist and hlist_del will work */static_unused inline void hlist_add_fake(struct hlist_node *n){ n->pprev = &n->next;}static_unused inline bool hlist_fake(struct hlist_node *h){ return h->pprev == &h->next;}/* * Check whether the node is the only node of the head without * accessing head: */static_unused inline bool hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h){ return !n->next && n->pprev == &h->first;}/* * Move a list from one list head to another. Fixup the pprev * reference of the first entry if it exists. */static_unused inline void hlist_move_list(struct hlist_head *old, struct hlist_head *new){ new->first = old->first; if (new->first) new->first->pprev = &new->first; old->first = NULL;}#define hlist_entry(ptr, type, member) container_of(ptr,type,member)#define hlist_for_each(pos, head) \ for (pos = (head)->first; pos ; pos = pos->next)#define hlist_for_each_safe(pos, n, head) \ for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ pos = n)#define hlist_entry_safe(ptr, type, member) \ ({ typeof(ptr) ____ptr = (ptr); \ ____ptr ? hlist_entry(____ptr, type, member) : NULL; \ })/** * hlist_for_each_entry - iterate over list of given type * @pos: the type * to use as a loop cursor. * @head: the head for your list. * @member: the name of the hlist_node within the struct. */#define hlist_for_each_entry(pos, head, member) \ for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\ pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))/** * hlist_for_each_entry_continue - iterate over a hlist continuing after current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */#define hlist_for_each_entry_continue(pos, member) \ for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\ pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))/** * hlist_for_each_entry_from - iterate over a hlist continuing from current point * @pos: the type * to use as a loop cursor. * @member: the name of the hlist_node within the struct. */#define hlist_for_each_entry_from(pos, member) \ for (; pos; \ pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))/** * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry * @pos: the type * to use as a loop cursor. * @n: another &struct hlist_node to use as temporary storage * @head: the head for your list. * @member: the name of the hlist_node within the struct. */#define hlist_for_each_entry_safe(pos, n, head, member) \ for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\ pos && ({ n = pos->member.next; 1; }); \ pos = hlist_entry_safe(n, typeof(*pos), member))#endif/*####################################################################################################################*/#define __LINUX_KERNEL_LIST_DEMO 0#if __LINUX_KERNEL_LIST_DEMOstruct list_test { struct list_head list; int a;#define LIST_TEST_INITIALIZER(v) {
{NULL, NULL}, v}};struct hlist_test { struct hlist_head list; int a;#define HLIST_TEST_INITIALIZER(v) {
{NULL}, v}};int demo_list_1_add_del_swap_for_each(){ struct list_head lhead; struct list_test lt1 = LIST_TEST_INITIALIZER(1); struct list_test lt2 = LIST_TEST_INITIALIZER(2); struct list_test lt3 = LIST_TEST_INITIALIZER(3); struct list_test lt4 = LIST_TEST_INITIALIZER(4); struct list_test lt5 = LIST_TEST_INITIALIZER(5); struct list_test *iter; INIT_LIST_HEAD(&lhead); list_add_tail(&lt1.list, &lhead); list_add_tail(&lt2.list, &lhead); list_add_tail(&lt3.list, &lhead); list_add_tail(&lt4.list, &lhead); list_add_tail(&lt5.list, &lhead); list_del_init(&lt3.list); list_for_each_entry(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); list_replace_init(&lt4.list, &lt3.list); list_for_each_entry(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); list_swap(&lt1.list, &lt5.list); list_for_each_entry(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); return 0;}int demo_list_2_move_and_move_tail(){ struct list_head lhead1, lhead2; struct list_test lt1 = LIST_TEST_INITIALIZER(1); struct list_test lt2 = LIST_TEST_INITIALIZER(2); struct list_test lt3 = LIST_TEST_INITIALIZER(3); struct list_test lt4 = LIST_TEST_INITIALIZER(4); struct list_test lt5 = LIST_TEST_INITIALIZER(5); struct list_test *iter; INIT_LIST_HEAD(&lhead1); INIT_LIST_HEAD(&lhead2); list_add_tail(&lt1.list, &lhead1); list_add_tail(&lt2.list, &lhead1); list_add_tail(&lt3.list, &lhead1); list_add_tail(&lt4.list, &lhead2); list_add_tail(&lt5.list, &lhead2); list_for_each_entry(iter, &lhead1, list) { printf("%d - ", iter->a); }printf("\n"); list_for_each_entry(iter, &lhead2, list) { printf("%d - ", iter->a); }printf("\n"); list_move(&lt1.list, &lhead2); list_for_each_entry(iter, &lhead1, list) { printf("%d - ", iter->a); }printf("\n"); list_for_each_entry(iter, &lhead2, list) { printf("%d - ", iter->a); }printf("\n"); list_move_tail(&lt2.list, &lhead2); list_for_each_entry(iter, &lhead1, list) { printf("%d - ", iter->a); }printf("\n"); list_for_each_entry(iter, &lhead2, list) { printf("%d - ", iter->a); }printf("\n"); return 0;}int demo_list_3_bulk_move(){ struct list_head lhead1, lhead2; struct list_test lt1 = LIST_TEST_INITIALIZER(1); struct list_test lt2 = LIST_TEST_INITIALIZER(2); struct list_test lt3 = LIST_TEST_INITIALIZER(3); struct list_test lt4 = LIST_TEST_INITIALIZER(4); struct list_test lt5 = LIST_TEST_INITIALIZER(5); struct list_test *iter; INIT_LIST_HEAD(&lhead1); INIT_LIST_HEAD(&lhead2); list_add_tail(&lt1.list, &lhead1); list_add_tail(&lt2.list, &lhead1); list_add_tail(&lt3.list, &lhead1); list_add_tail(&lt4.list, &lhead2); list_add_tail(&lt5.list, &lhead2); list_for_each_entry(iter, &lhead1, list) { printf("%d - ", iter->a); }printf("\n"); list_for_each_entry(iter, &lhead2, list) { printf("%d - ", iter->a); }printf("\n"); list_bulk_move_tail(&lhead2, &lt1.list, &lt2.list); list_for_each_entry(iter, &lhead1, list) { printf("%d - ", iter->a); }printf("\n"); list_for_each_entry(iter, &lhead2, list) { printf("%d - ", iter->a); }printf("\n"); return 0;}int demo_list_4_is_first_is_last_is_empty_is_singular(){ struct list_head lhead; struct list_test lt1 = LIST_TEST_INITIALIZER(1); struct list_test lt2 = LIST_TEST_INITIALIZER(2); struct list_test lt3 = LIST_TEST_INITIALIZER(3); struct list_test lt4 = LIST_TEST_INITIALIZER(4); struct list_test lt5 = LIST_TEST_INITIALIZER(5); struct list_test *iter; INIT_LIST_HEAD(&lhead); if(list_empty(&lhead)) { printf("is empty.\n"); } if(list_empty_careful(&lhead)) { printf("is list_empty_careful.\n"); } list_add_tail(&lt1.list, &lhead); if(list_is_singular(&lhead)) { printf("is list_is_singular.\n"); } list_add_tail(&lt2.list, &lhead); list_add_tail(&lt3.list, &lhead); list_add_tail(&lt4.list, &lhead); list_add_tail(&lt5.list, &lhead); if(list_empty(&lhead)) { printf("is empty.\n"); } list_for_each_entry(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); if(list_is_first(&lt1.list, &lhead)) { printf("is first.\n"); } if(list_is_last(&lt1.list, &lhead)) { printf("is last.\n"); } if(list_is_first(&lt5.list, &lhead)) { printf("is first.\n"); } if(list_is_last(&lt5.list, &lhead)) { printf("is last.\n"); } return 0;}int demo_list_5_rotate(){ struct list_head lhead; struct list_test lt1 = LIST_TEST_INITIALIZER(1); struct list_test lt2 = LIST_TEST_INITIALIZER(2); struct list_test lt3 = LIST_TEST_INITIALIZER(3); struct list_test lt4 = LIST_TEST_INITIALIZER(4); struct list_test lt5 = LIST_TEST_INITIALIZER(5); struct list_test *iter; INIT_LIST_HEAD(&lhead); list_add_tail(&lt1.list, &lhead); list_add_tail(&lt2.list, &lhead); list_add_tail(&lt3.list, &lhead); list_add_tail(&lt4.list, &lhead); list_add_tail(&lt5.list, &lhead); list_for_each_entry(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); list_rotate_left(&lhead); list_for_each_entry(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); list_rotate_to_front(&lt4.list, &lhead); list_for_each_entry(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); // list_rotate_left(&lhead);////// list_for_each_entry(iter, &lhead, list) {// printf("%d - ", iter->a);// }printf("\n"); return 0;}int demo_list_6_cut(){ struct list_head lhead; struct list_test lt1 = LIST_TEST_INITIALIZER(1); struct list_test lt2 = LIST_TEST_INITIALIZER(2); struct list_test lt3 = LIST_TEST_INITIALIZER(3); struct list_test lt4 = LIST_TEST_INITIALIZER(4); struct list_test lt5 = LIST_TEST_INITIALIZER(5); struct list_test *iter; INIT_LIST_HEAD(&lhead); list_add_tail(&lt1.list, &lhead); list_add_tail(&lt2.list, &lhead); list_add_tail(&lt3.list, &lhead); list_add_tail(&lt4.list, &lhead); list_add_tail(&lt5.list, &lhead); list_for_each_entry(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); struct list_head lhead2; list_cut_position(&lhead2, &lhead, &lt3.list);// 1 - 2 - 3 - 4 - 5 - // 4 - 5 - // 1 - 2 - 3 - // list_cut_before(&lhead2, &lhead, &lt3.list);// 1 - 2 - 3 - 4 - 5 - // 3 - 4 - 5 - // 1 - 2 - list_for_each_entry(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); list_for_each_entry(iter, &lhead2, list) { printf("%d - ", iter->a); }printf("\n"); return 0;}int demo_list_7_splice()//粘贴{ struct list_head lhead; struct list_test lt1 = LIST_TEST_INITIALIZER(1); struct list_test lt2 = LIST_TEST_INITIALIZER(2); struct list_test lt3 = LIST_TEST_INITIALIZER(3); struct list_test lt4 = LIST_TEST_INITIALIZER(4); struct list_test lt5 = LIST_TEST_INITIALIZER(5); struct list_test *iter; INIT_LIST_HEAD(&lhead); list_add_tail(&lt1.list, &lhead); list_add_tail(&lt2.list, &lhead); list_add_tail(&lt3.list, &lhead); struct list_head lhead2; INIT_LIST_HEAD(&lhead2); list_add_tail(&lt4.list, &lhead2); list_add_tail(&lt5.list, &lhead2); list_for_each_entry(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); list_for_each_entry(iter, &lhead2, list) { printf("%d - ", iter->a); }printf("\n");#if 1 list_splice(&lhead2, &lhead);// list_splice_tail(&lhead2, &lhead); list_for_each_entry(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n");#else list_splice_init(&lhead2, &lhead);// list_splice_tail_init(&lhead2, &lhead); list_for_each_entry(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); list_for_each_entry(iter, &lhead2, list) { printf("%d - ", iter->a); }printf("\n");#endif return 0;}int demo_list_8_for_each_and_entry(){ struct list_head lhead; struct list_test lt1 = LIST_TEST_INITIALIZER(1); struct list_test lt2 = LIST_TEST_INITIALIZER(2); struct list_test lt3 = LIST_TEST_INITIALIZER(3); struct list_test lt4 = LIST_TEST_INITIALIZER(4); struct list_test lt5 = LIST_TEST_INITIALIZER(5); struct list_test *iter; INIT_LIST_HEAD(&lhead); list_add_tail(&lt1.list, &lhead); list_add_tail(&lt2.list, &lhead); list_add_tail(&lt3.list, &lhead); list_add_tail(&lt4.list, &lhead); list_add_tail(&lt5.list, &lhead); list_for_each_entry(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); iter = list_first_entry(&lhead, struct list_test, list); printf("list_first_entry: %d - \n", iter->a); iter = list_last_entry(&lhead, struct list_test, list); printf("list_last_entry: %d - \n", iter->a); iter = list_first_entry_or_null(&lhead, struct list_test, list); printf("list_first_entry_or_null: %d - \n", iter->a); iter = list_next_entry(iter, list); printf("list_next_entry: %d - \n", iter->a); iter = list_prev_entry(iter, list); printf("list_prev_entry: %d - \n", iter->a); struct list_head *lh_iter; list_for_each(lh_iter, &lhead){ printf("%p - ", lh_iter); }printf("\n"); list_for_each_prev(lh_iter, &lhead){ printf("%p - ", lh_iter); }printf("\n"); struct list_head *lh_n; list_for_each_safe(lh_iter, lh_n, &lhead){ printf("%p - ", lh_iter); }printf("\n"); list_for_each_prev_safe(lh_iter, lh_n, &lhead){ printf("%p - ", lh_iter); }printf("\n"); list_for_each_entry(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); list_for_each_entry_reverse(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); iter = &lt3; list_prepare_entry(iter, &lhead, list); //TODO printf("list_prepare_entry: %d\n", iter->a); list_for_each_entry_continue(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); list_for_each_entry_continue_reverse(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); iter = &lt3; list_for_each_entry_from(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); iter = &lt3; list_for_each_entry_from_reverse(iter, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); struct list_test *iter_next; list_for_each_entry_safe(iter,iter_next, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); list_for_each_entry_safe(iter,iter_next, &lhead, list) { printf("%d - ", iter->a); list_safe_reset_next(iter, iter_next, list); }printf("\n"); iter = &lt3; list_for_each_entry_safe_continue(iter, iter_next, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); iter = &lt3; list_for_each_entry_safe_from(iter, iter_next, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); list_for_each_entry_safe_reverse(iter, iter_next, &lhead, list) { printf("%d - ", iter->a); }printf("\n"); return 0;}#endif //__LINUX_KERNEL_LIST_DEMO

 

转载地址:http://bbpaf.baihongyu.com/

你可能感兴趣的文章
英特尔诺基亚联手研发Symbian系统的智能手机
查看>>
成功的人看到问题的时候是想到怎么解决问题
查看>>
Symbian收购北京创世互动科技有限公司研发团队及技术以实施全球研发战略
查看>>
Spring的事务处理机制
查看>>
我是这样在第一轮筛选简历的
查看>>
struts2表单验证初步及国际化实现(学习总结)
查看>>
UML 的九种模型图
查看>>
【开发经验】Struts常见错误及原因分析
查看>>
优化软件性能的方法
查看>>
UML 基础: 类图
查看>>
怎样成为优秀的软件模型设计者?
查看>>
J2EE的13种核心技术
查看>>
Java学习笔记_身份验证机制
查看>>
VGS--网络三维互动软件技术
查看>>
国际最新LOGO设计趋势总结
查看>>
JMS---Java消息服务
查看>>
何时应该使用极限编程
查看>>
08年最热门七大技术和最紧缺的IT人才
查看>>
网络游戏的数据管理
查看>>
基于Ajax的Web框架Echo2 2.0发布
查看>>